Statistical inference for generalized Ornstein-Uhlenbeck processes
نویسندگان
چکیده
منابع مشابه
Multivariate Generalized Ornstein-Uhlenbeck Processes
De Haan and Karandikar [12] introduced generalized Ornstein–Uhlenbeck processes as one-dimensional processes (Vt)t≥0 which are basically characterized by the fact that for each h > 0 the equidistantly sampled process (Vnh)n∈N0 satisfies the random recurrence equation Vnh = A(n−1)h,nhV(n−1)h + B(n−1)h,nh, n ∈ N, where (A(n−1)h,nh, B(n−1)h,nh)n∈N is an i.i.d. sequence with positive A0,h for each ...
متن کاملGeneralized fractional Ornstein-Uhlenbeck processes
We introduce an extended version of the fractional Ornstein-Uhlenbeck (FOU) process where the integrand is replaced by the exponential of an independent Lévy process. We call the process the generalized fractional Ornstein-Uhlenbeck (GFOU) process. Alternatively, the process can be constructed from a generalized Ornstein-Uhlenbeck (GOU) process using an independent fractional Brownian motion (F...
متن کاملExact propagator for generalized Ornstein-Uhlenbeck processes.
A closed form expression for the propagator is derived, in terms of modified Bessel functions, for the Fokker-Planck equation for a physically important generalization of the Ornstein-Uhlenbeck process where the diffusion constant D(p) is a function of the momentum. The closed form is found for the general case D(p) approximately |p|(-alpha) where alpha > or =0 and leads to the standard Gaussia...
متن کاملGeneralized Ornstein-Uhlenbeck Processes and Extensions
The generalized Ornstein-Uhlenbeck process Vt = e −ξt ( V0 + ∫ t 0 edηs ) , t ≥ 0, driven by a bivariate Lévy process (ξt, ηt)t≥0 with starting random variable V0 independent of (ξ, η) fulfills the stochastic differential equation dVt = Vt−dUt + dLt for another bivariate Lévy process (Ut, Lt)t≥0, which is determined completely by (ξ, η). In particular it holds ξt = − log(E(U)t), t ≥ 0, where E(...
متن کاملInference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility∗
Continuous-time stochastic volatility models are becoming an increasingly popular way to describe moderate and high-frequency financial data. Recently, Barndorff-Nielsen and Shephard (2001a) proposed a class of models where the volatility behaves according to an Ornstein-Uhlenbeck process, driven by a positive Lévy process without Gaussian component. These models introduce discontinuities, or j...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2015
ISSN: 1935-7524
DOI: 10.1214/15-ejs1063